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To obtain insights into striatal neural processes underlying reward-
based learning and movement control, we examined spatial organi-
zations of striatal neurons related to movement and reward-based
learning. For this, we recorded the activity of direct- and indirect-
pathway neurons (D1 and A2a receptor-expressing neurons, respec-
tively) in mice engaged in probabilistic classical conditioning and
open-field free exploration. We found broadly organized functional
clusters of striatal neurons in the direct as well as indirect pathways
for both movement- and reward-related variables. Functional clusters
for different variables were partially overlapping in both pathways,
but the overlap between outcome- and value-related functional clus-
ters was greater in the indirect than direct pathway. Also, value-
related spatial clusters were progressively refined during classical con-
ditioning. Our study shows the broad and learning-dependent spatial
organization of functional clusters of dorsal striatal neurons in the
direct and indirect pathways. These findings further argue against the
classic model of the basal ganglia and support the importance of
spatiotemporal patterns of striatal neuronal ensemble activity in the
control of behavior.

striatum | calcium imaging | probabilistic classical conditioning | value |
reward

The striatum is critically involved in voluntary motor control
and reward-based learning (1–3). The striatum sends its

output to its downstream structures via two distinct streams of
projections, namely the direct and indirect pathways. The direct
pathway projects directly to the internal globus pallidus (GPi; in
primates) and the substantia nigra pars reticulata (SNr), while
the indirect pathway projects to the external globus pallidus
(GPe) and then to the SNr/GPi. The direct and indirect pathways
of the basal ganglia have long been thought to play opposing
roles, with the former promoting and the latter inhibiting be-
havior (4, 5). This classic model of the basal ganglia has played a
central role in conceptualizing normal circuit operations as well
as the pathophysiology of the basal ganglia (6). This view of the
direct and indirect pathways is supported by numerous neuro-
modulation studies in which activation of the direct and indirect
pathways promoted and suppressed behavior, respectively (7–9),
or, conversely, inactivation of the direct and indirect pathways
impaired the initiation of learned motor actions and suppression
of erroneous motor actions, respectively (10, 11). However, re-
cent studies have provided evidence against the classic model of the
basal ganglia. For example, not only direct-pathway but also
indirect-pathway striatal neurons are activated during action initia-
tion (12). This finding can be explained by the refined classic rate
model, which posits that the direct pathway promotes targeted
movement while the indirect pathway suppresses competing motor
programs (13, 14). This “suppression-selection model” has been
challenged by more recent studies, however; unilateral inactivation
of either pathway induced similar ipsiversive movement (15), and
bilateral inactivation of either pathway similarly suppressed a

sequential lever press behavior (11). Moreover, the two pathways
showed comparable spatial patterns of activity during movement, a
finding difficult to explain with the suppression-selection model (16).
Contradicting bodies of evidence for and against opposing

roles of the direct and indirect pathways in controlling behavior
call for a more nuanced model considering functional organi-
zations of the two pathways beyond a model assuming a simple
seesaw-like balance between the two pathways. In this regard,
the striatum has been proposed to control behavior based on
spatially organized, mutually competing functional clusters of
direct- and indirect-pathway neurons (17). In this scenario, di-
rect- and indirect-pathway neurons of a given functional cluster
promote and inhibit a specific behavior, respectively. However,
precise representation of selected behavior would be determined
by precise activity patterns of direct- and indirect-pathway neu-
rons across multiple functional clusters, which are shaped by
patterns of input activity and lateral inhibition among different
functional clusters. The functional cluster model is consistent
with the findings that subpopulations of striatal neurons show
synchronized activation in association with movements and re-
warding events (12, 18, 19).
To formulate and refine such nuanced models of the basal

ganglia, it would be important to understand how functional en-
sembles of striatal neurons are organized in the spatiotemporal
domain. Currently, there is no consensus even on the simple issue
of whether and how striatal neurons form spatially organized
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functional clusters. The initial study reported that movement-
related functional ensembles form compact local clusters in the
striatum (20). However, later studies reported broad and loosely
organized spatial patterns of functional neuronal ensembles (16,
21). Furthermore, other studies concluded the absence of spatially
organized functional neuronal ensembles in the striatum (10, 22).
In the present study, unlike in the previous studies that focused

on movement-related variables, we examined spatial organizations
of functional clusters related to both voluntary movement and
reward-based learning. We also investigated whether spatially
organized functional clusters, if they exist, can be refined with
learning. For this, we performed endoscopic calcium imaging of
dorsal striatal neurons in mice performing a classical conditioning
task and a self-paced open-field test. Our results indicate partially
overlapping and learning-dependent spatial organizations of
striatal neuronal clusters for movement- and reward-related vari-
ables in both the direct and indirect pathways.

Results
Virus Injection and Lens Implantation. We injected the adeno-
associated virus (AAV) vector carrying the gene for GCaMP6f
with enhanced yellow fluorescent protein (eYFP) into the dorsal
striatum of mice. Specifically, we injected AAV-hsyn-GCaMP6f-
eYFP into wild-type (WT) mice (n = 3), and injected AAV-
flex-GCaMP6f-eYFP into D1R-Cre (n = 5) and A2a-Cre (n = 5)
mice for selective expression of the calcium sensor in direct- and
indirect-pathway medium spiny neurons, respectively (23, 24)
(Fig. 1A). Two weeks after the virus injection, we implanted a
graded-index (GRIN) lens (diameter, 1 mm) in the dorsal striatum
to record calcium fluorescence signals from both dorsolateral and
dorsomedial striatal neurons (SI Appendix, Fig. S1). Histological
examinations at the completion of recording revealed selective
expression of GCaMP6f in direct- and indirect-pathway striatal
neurons in D1R-Cre and A2a-Cre mice, respectively (Fig. 1 B
and C).

Fig. 1. Virus expression and classical conditioning task. (A) A schematic sagittal brain diagram showing AAV virus injection into the dorsal striatum. (B and C)
Sagittal sections of D1R-Cre (B) and A2a-Cre (C) mouse brains showing GCaMP6f expression (green) in the dorsal striatum and SNr (D1R-Cre mouse) or GPe
(A2a-Cre mouse). (D and E) Schematics for a probabilistic classical conditioning task (D) and its experimental setting (E). (F) Cue-dependent licking responses
averaged across all sessions and all animals. Shown are lick density functions (σ = 100 ms; shading indicates SEM across animals). Trials were grouped according
to cue. (G–I) Cue-dependent licking responses during the final session for each animal. Shown are lick rates during the delay period (G), outcome period (1 s)
in rewarded trials (H), and outcome period (1 s) in unrewarded trials (I). Outcome onset was defined as the time of the first lick after reward delivery in
rewarded trials and as the time of buzzer onset in unrewarded trials. Circles indicate individual animal data (n = 13 mice consisting of 3 WT, 5 D1R-Cre, and
5 A2a-Cre mice). Bar graphs and error bars indicate their mean and SEM across animals. ***P < 0.001 (ANOVA followed by post hoc Tukey test). (J) Mean
(±SEM across animals) delay-period lick rates shown by training day. Green arrowheads denote significantly differential lick rates to all three cues (P < 0.01,
ANOVA followed by post hoc Tukey test).
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Behavior. Calcium signals were monitored while the mice were
engaged in a probabilistic classical conditioning task under head
fixation (Fig. 1 D and E) as well as self-paced free exploration in
a square box (Fig. 2A). In the classical conditioning task, three
different odor cues (1 s) were paired with three different prob-
abilities (20, 50, and 80%) of water delivery (5 μL) following a
delay of 1 s. A buzzer sound cue (2,300 Hz, 100 ms) was pre-
sented in unrewarded trials (Fig. 1D). The mice showed antici-
patory licking responses before reward delivery (cue and delay
periods) and the rate of anticipatory licking during the delay
increased as a function of reward probability [one-way ANOVA,
F(2,36) = 33.53, P = 6.0 × 10−9; Fig. 1 F and G]. Lick rate during
the outcome period (1 s following outcome onset) was similar
across the three cues in rewarded trials [1 s after reward delivery;
F(2,36) = 0.083, P = 0.922; Fig. 1H] but different across the three
cues in unrewarded trials [F(2, 36) = 11.30, P = 1.5 × 10−4;
Fig. 1I]. The mice started to show significantly differential an-
ticipatory licking to either 20 or 80% reward cue versus the other
two cues on the first day of training, and showed differential
licking to all three cues within 2 to 5 d of training (see Materials
and Methods for the performance criterion) (Fig. 1J). The mice
were trained for 2 additional days after reaching the criterion.
Mean (±SD) training durations were 5.6 ± 0.6, 4.8 ± 0.6, and
5.0 ± 0.7 daily sessions for WT, D1R-Cre, and A2a-Cre mice,
respectively (SI Appendix, Fig. S2).

Each classical conditioning session was followed by a session
of self-paced open-field exploration (10 to 15 min) in a square
box (30 × 30 × 30 cm) with a 5-min intermission. The animal’s
movement was monitored with a high-definition video camera
(Fig. 2A), and head, body center, and proximal part of the mouse
tail were tracked with a deep learning-based position-tracing
algorithm (DeepLabCut; Materials and Methods and Fig. 2 B
and C). The animal’s movement was classified as five types
(forward motion, contralateral turn, ipsilateral turn, stop, and
others; Fig. 2 D–G; see SI Appendix, Fig. S3 for their charac-
teristics) based on movement velocities of the head, body center,
and proximal part of the tail along with head angular velocity
(Materials and Methods).

Activity Correlation as a Function of Distance. The recorded calcium
signals were processed with nVista image-processing software
and calcium transients were extracted using the constrained
nonnegative matrix factorization for endoscopy (CNMF-E) al-
gorithm (25). To ensure proper handling of fluctuating back-
ground fluorescence signals, we extracted calcium signals using
substituted background signals from other sessions. Calcium
transient signals obtained with this procedure were similar to the
original ones (SI Appendix, Fig. S4), indicating that fluctuating
background signals were well-adjusted by the CNMF-E algo-
rithm. As previously reported in our neurophysiological study

Fig. 2. Open-field test. (A) A schematic for the open-field arena used in the experiments. (B) A sample video frame showing tracking of the head (red), center
(green), and tail (blue) of a mouse with DeepLabCut. The angle symbol denotes the head direction angle. (C) Cumulative positions of the head (red), center
(green), and tail (blue) during a sample session. (D) The animal’s behavioral state was classified into five different categories (Middle; orange, complete stop;
green, forward motion; red, contralateral turn; blue, ipsilateral turn; gray, other states) based on velocity traces of head, center, and tail positions along with
head angular velocity (Top). (D, Bottom) Calcium transient signals of 226 dorsal striatal neurons recorded during the sample session. (E–G) Mean velocity
traces and corresponding mean normalized calcium traces in D1R-Cre (n = 5) and A2a-Cre (n = 5) mice aligned to the onset of forward motion (E), stop (F), or
ipsilateral/contralateral turn (G). Shading indicates SEM across animals.
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(26), both direct- and indirect-pathway striatal neurons showed
diverse patterns of responses to reward- and movement-related
variables. In particular, they showed a strong tendency to in-
crease activity in association with movement during open-field
exploration; calcium transient signals were much greater after
compared with before movement onset (Fig. 2 D–G), which is
consistent with previous reports (12, 20, 21).
To examine the functional spatial clustering of striatal neurons,

we first examined how pairwise correlation in calcium transient
signals varies as a function of the distance between neurons (Fig. 3).
We found that neighboring neurons tend to show positively corre-
lated changes in calcium signal with the strength of correlation
decaying gradually. The distance (mean ± SD) where the correla-
tion curve reached the baseline (“correlation decay distance”; Ma-
terials and Methods and SI Appendix, Fig. S5) was 208 ± 44, 61 ± 3,
and 53 ± 5 μm in WT, D1R-Cre, and A2a Cre mice, respectively,
during the classical conditioning task, and 138 ± 1, 68 ± 1, and 50 ±
6 μm, respectively, during the open-field test. The difference was
significant across the animal groups and the tasks [two-way mixed
ANOVA, animal group, F(2,20) = 151.5, P = 8.3 × 10−13; task,
F(1,20) = 15.6, P = 7.9 × 10−4; animal group × task interaction,
F(2,20) = 14.4, P = 1.3 × 10−4; post hoc Tukey test for difference
between animal groups, classical conditioning task, WT versus
D1R-Cre, P = 2.1 × 10−8, WT versus A2a-Cre, P = 2.1 × 10−8,
D1R-Cre versus A2a-Cre, P = 0.947; open-field test, WT versus
D1R-Cre, P = 2.4 × 10−5, WT versus A2a-Cre, P = 5.0 × 10−7,
D1R-Cre versus A2a-Cre, P = 0.245; SI Appendix, Fig. S5]. These
results indicate similar activity patterns among closely spaced
striatal neurons, which is consistent with the spatial clustering of
functionally related striatal neurons. The longer correlation decay
distance in WT than the other animal groups is presumably because
spatial clusters of the two pathways are overlaid in WT mice.

Clustering of Functionally Related Striatal Neurons. We then exam-
ined the spatial distribution of striatal neurons coding the same
variable. Previous studies have shown that striatal neurons convey
value and outcome signals in the form of persistent neural activity
for multiple trials (27, 28). For the classical conditioning task,
therefore, we examined calcium signals significantly correlated
with value (i.e., reward probability), outcome (reward delivery
versus reward omission), previous outcome (outcome of the pre-
vious trial), and previous value (i.e., reward probability associated
with the cue in the previous trial) using a multiple-regression
analysis that included lick rate as an additional regressor to con-
trol for lick-dependent neural activity (Eq. 1). The analysis time
windows were as follows: outcome, 1 s after outcome delivery;
value, 1 s after cue delivery; and previous value and previous
outcome, 3 s after cue delivery. For the free-exploration session,
we examined calcium signals significantly correlated with forward
motion, stop, contralateral turn, and ipsilateral turn (Fig. 2 E–G)
using a simple regression analysis (Eq. 2). The analysis windows
for movement-related variables were 1-s periods following each
movement onset. We used the data collected on the last day of
classical conditioning for these analyses. To illustrate how we
determined spatial clustering, we describe in detail how we
assessed spatial clusters related to reward value as follows. Spatial
clustering for other variables was determined in the same way.
For the analysis of spatial clustering of value-coding striatal

neurons, we first determined the regression coefficient for value
for each neuron (Eq. 1). We found both positive and negative
correlations between striatal neuronal activity and reward value
(Fig. 4 A and B). The fraction of neurons that increase their ac-
tivity as a function of value was significantly greater in D1R-Cre
than A2a-Cre mice (delay period, χ2 test, χ2 = 34.96, P = 3.4 ×
10−9) and, conversely, the fraction of neurons that decrease their
activity as a function of value was significantly greater in A2a-Cre
than D1R-Cre mice (χ2 = 10.22, P = 0.001; Fig. 4 C–E), which
confirms our previous report (26). Fig. 4 F–H shows spatial

distributions of the regression coefficient for value in sample WT,
D1R-Cre, and A2a-Cre mice. Red and blue indicate positive and
negative signs of the regression coefficient, respectively, and color
saturation denotes the magnitude of the regression coefficient. As
shown, in all mice, value-related neuronal responses were broadly
and nonuniformly distributed. We adopted a method used previ-
ously for identifying orientation columns in the visual cortex (29)
to determine the significance and size of a functional cluster.
Briefly, we calculated the local cluster index, which is the mean
absolute difference in the regression coefficient between a refer-
ence neuron and all other neurons within a circular boundary. We
estimated the local cluster index while changing the radius of the
circular boundary from 30 to 600 μm, and the size and significance
of a cluster were determined by comparing the original local
cluster index curve with those obtained after a random shuffling of
neuronal positions (Materials and Methods and SI Appendix, Fig.
S6). We found significant spatial clusters related to reward value
in all animals tested (Fig. 4 I and J). The mean (±SD) cluster size
was 280 ± 194, 258 ± 278, and 129 ± 36 μm in WT, D1R-Cre, and
A2a-Cre mice, respectively, which did not vary significantly [one-
way ANOVA, F(2,10) = 0.76, P = 0.481; Fig. 4K]. We performed a
spatial autocorrelation analysis to further validate the spatial
clustering of value-coding striatal neurons. We found that spatial
autocorrelation maps deviated significantly from a random dis-
tribution which was consistent across different filter sizes (per-
mutation test; SI Appendix, Fig. S7). These results indicate that 1)
value-coding striatal neurons are spatially organized, 2) such
value-related functional clusters are broadly rather than compactly
organized, and 3) value-related spatial clustering is similar be-
tween direct- and indirect-pathway neurons.
A previous one-photon imaging study measured “pairwise dis-

tance” and “similarity score” (the degree of simultaneous activa-
tion) between simultaneously recorded neurons and found no
evidence for functional spatial clustering (22). We applied the same
analysis procedures to our data to investigate why different con-
clusions were drawn across studies. When we calculated pairwise
distance from our data, we also failed to find evidence for signifi-
cant spatial clustering (SI Appendix, Fig. S8 A and B); however, this
measure successfully detected simulated compact functional clus-
ters (SI Appendix, Fig. S8 C and D), suggesting that pairwise dis-
tance might not be an appropriate measure for detecting broadly
and loosely organized spatial clusters. When we calculated the
similarity score from our data, 17.5% of all neuron pairs were es-
timated to have significant similarity scores (i.e., positively corre-
lated activity; SI Appendix, Fig. S8 E and F) which is substantially
larger than the previously reported value (1.7%) (22). A possible
explanation for this discrepancy is that the number of simulta-
neously recorded neurons within a field of view (1-mm-diameter
GRIN lens) was relatively small in the study that failed to find
evidence for functional spatial clustering (555 neurons from 8 mice;
69.3 neurons per session on average) (22) compared with our study
(2,855 neurons from 13 mice; 219.6 neurons per session) and an
earlier one-photon imaging study that found significant spatial
clustering (7,434 neurons from 25 mice; 297.4 neurons per session)
(16). Indeed, when we downsampled our neural data (randomly
selected 70 neurons per session), only 2.7% of all neuron pairs
were estimated to have significant similarity scores (SI Appendix,
Fig. S8 G and H).
We obtained overall similar results with variables other than

reward value (SI Appendix, Fig. S9). We found significant spatial
clustering of all variables in all mice during the classical condi-
tioning task except for “previous outcome” in one A2a-Cre
mouse, and “previous value” in one WT and one D1R-Cre
mouse. Likewise, we found significant spatial clustering of all
variables in all mice during the free-exploration session except
for “forward motion” in one D1R-Cre mouse, “stop” for one WT
and one A2a-Cre mouse, “contralateral turn” in one D1R-Cre
mouse, and “ipsilateral turn” in one A2a-Cre and one D1R-Cre
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mouse (SI Appendix, Fig. S9 and Table S1). No significant vari-
ation in cluster size was found across the three animal groups in
any of these variables (one-way ANOVA, P values > 0.05).
Cluster sizes averaged across different variables in WT, D1R-
Cre, and A2a-Cre mice (in μm; ±SD) were 205 ± 72, 222 ±
110, and 91 ± 29, respectively, in the classical conditioning task
and 226 ± 99, 170 ± 94, and 98 ± 70, respectively, in the open-
field test. The difference was significant across the animal groups
but not across the tasks [two-way mixed ANOVA, animal group,
F(2,18) = 4.9, P = 0.019; task, F(1,18) = 0.06, P = 0.807; animal
group × task interaction, F(2,18) = 0.5, P = 0.644; post hoc Tukey
test for difference between animal groups, WT versus D1R-Cre,
P = 0.887, WT versus A2a-Cre, P = 0.024, D1R-Cre versus A2a-
Cre, P = 0.061]. These results indicate broad functional spatial
clusters for reward- as well as movement-related variables in
both the direct and indirect pathways.

Relations among Different Functional Clusters. Next, we examined
how functional spatial clusters for different variables are related,
and whether these relationships vary between direct- and indirect-
pathway striatal neurons. Fig. 5A shows spatial distributions of re-
gression coefficients for the reward- and movement-related vari-
ables in a sample D1R-Cre mouse. Note that the coefficient spatial
maps are distinct but partially overlapping between different vari-
ables. For quantification, we calculated cross-correlations between
coefficient spatial maps for all possible combinations of variables.
We found both positive and negative correlations between different
coefficient spatial maps (Fig. 5B shows cross-correlations averaged

across animals). For example, coefficient spatial maps for forward
motion, contralateral turn, and ipsilateral turn were positively
correlated with each other whereas they were negatively corre-
lated with the coefficient spatial map for stop. This suggests that a
common set of striatal neurons might be activated during
movement initiation.
The absolute spatial-map correlation was larger between vari-

ables estimated in the same behavioral task than across the two
tasks [one-way ANOVA, F(2,36) = 16.64, P = 7.6 × 10−6; post hoc
Tukey test, within classical conditioning vs. across tasks, P = 0.001;
within free exploration vs. across tasks, P = 6.2 × 10−6; Fig. 5C].
Thus, stronger relationships (both positive and negative) were
found between spatial clusters of variables estimated in the same
behavioral context than those estimated across different behav-
ioral contexts (classical conditioning under head fixation versus
free exploration). It remains to be determined whether this is
because movement- and reward-related variables are orthogonally
represented and/or because the striatal neural activity is strongly
modulated by a set of sensory signals (contextual information).
Unexpectedly, we found a negative relationship between clusters
for previous value and previous outcome in all animal groups
(Fig. 5B), which suggests that striatal neurons might carry reward
prediction error (the difference between predicted and actual
outcomes) signals until the next trial.
That functional spatial clusters are partially overlapping sug-

gests individual neurons are responsive to multiple variables. In-
deed, as reported previously (26), individual striatal neurons were
responsive to multiple variables in both D1R-Cre and A2a-Cre

Fig. 3. Cross-correlation of calcium signals as a function of distance. (A) A sample spatial map of striatal neurons recorded from a D1R-Cre mouse. Colors
indicate three sample neurons whose calcium signals are shown in B. The spatial orientation is denoted as A, P, M, and L for anterior, posterior, medial, and
lateral, respectively. (B) Normalized calcium signal traces of the three sample neurons that were more active in the classical conditioning task (red), more
active in the open-field test (blue), or equally active in the two tasks (black). (Scale bars, time [2 min] and normalized intensity [10].) (C) Scatterplots showing
cross-correlations of calcium signals for all pairs of simultaneously recorded striatal neurons during the classical conditioning task (Left), open-field test
(Middle), and entire task periods (Right) in WT (Top), D1R-Cre (Middle), and A2a-Cre (Bottom) mice. Black, light blue, and orange lines denote mean cross-
correlations for WT, D1R-Cre, and A2a-Cre mice, respectively, and shading indicates 2 SDs.
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mice [“mixed selectivity” (30); SI Appendix, Fig. S10]. This ex-
plains partially overlapping patterns of functional spatial clusters
for different variables. We found that <30% of striatal neurons
were significantly responsive to only one variable and the rest were
responsive to two or more variables with some responsive up to
seven (SI Appendix, Fig. S10A). We also found that ∼30% of
striatal neurons show significant responses to both reward- and
movement-related variables (SI Appendix, Fig. S10B). Striatal
neuronal populations showed positively correlated, negatively
correlated, as well as uncorrelated responses to two different
variables (examples are shown in SI Appendix, Fig. S10C). When
we calculated correlations between two different variables for all
possible combinations, the resulting pattern was similar to that for

cross-correlations between coefficient spatial maps shown in
Fig. 5B (SI Appendix, Fig. S10D).
The pattern of spatial-map correlations was similar between

D1R-Cre and A2a-Cre mice. Thus, both direct- and indirect-
pathway striatal neurons formed functional spatial clusters for
different variables in a partially overlapping manner. However,
cluster relationships were not identical between D1R-Cre and
A2a-Cre mice. When we performed hierarchical clustering to
further characterize relationships among different functional
spatial clusters, we found some differences between D1R-Cre and
A2a-Cre mice (Fig. 5D). Spatial clusters for movement initiation-
related variables, namely forward motion, contralateral turn, and
ipsilateral turn, were grouped in D1R-Cre as well as A2a-Cre
mice. However, spatial clusters for reward-related variables were

Fig. 4. Spatial clustering of value-coding striatal neurons. (A) A sample spatial map of striatal neurons recorded from a D1R-Cre mouse. Two sample neurons
that increased and decreased activity as a function of value are indicated by arrowheads with red and blue colors, respectively. (B) Calcium signals of the two
sample neurons (shading indicates SEM across trials) during the classical conditioning task. Trials were grouped according to cue. (C–E) Temporal profiles of
value signals (0.5-s moving window, 0.1-s steps). (C–E, Left) Fractions of neurons significantly responsive to value. (C–E, Middle and Right) Value-coding
neurons were divided into those increasing (positive value coding; Middle) and decreasing (negative value coding; Right) activity as a function of value. Gray,
WT (n = 3 mice, 596 neurons); light blue, D1R-Cre (n = 5 mice, 1,004 neurons); orange, A2a-Cre (n = 5 mice, 1,255 neurons). Green triangles indicate significant
difference between D1R-Cre and A2a-Cre mice (P < 0.05, χ2 test). (F–H, Top) Sample spatial maps showing spatial distributions of value-related neural activity
obtained from a WT (Left), D1R-Cre (Middle), and A2a-Cre mouse. Value coefficients obtained from multiple linear regression are color-coded for each
neuron. (F–H, Bottom) The local difference in value coefficient as a function of ROI size for the corresponding sample spatial map. Blue and red denote local-
difference curves obtained from the original and position-shuffled data, respectively. Red shading indicates 1 SD; light red shading indicates 2 SDs. Vertical
dashed lines indicate the cluster size. (I) Shown are the local cluster index histogram of the position-shuffled data (1,000 iterations; red), its cumulative
probability density function (orange curve), and local cluster index of the original data (blue line) for the WT sample spatial map shown in F. P value was
calculated as the integral of the probability density function between the position of the real data and infinity. (J) Local cluster indices and P values for all
animals (WT, gray; D1R-Cre, light blue; A2a-Cre, orange). The black vertical line denotes the threshold for significant clustering (P = 0.05). (K) Cluster sizes
(means ± SEM across animals) in WT, D1R-Cre, and A2a-Cre mice. Circles indicate individual animal data.
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Fig. 5. Relationships among clusters coding different variables. (A) Sample spatial maps for reward-related variables (Top, classical conditioning task) and
movement-related variables (Bottom, open-field test) recorded from a D1-Cre mouse. The same format is used as in Fig. 4F. (B) Spatial correlations
(color-coded) between maps for different variables (CT, contralateral turn; F, forward motion; IT, ipsilateral turn; O, outcome; PO, previous outcome; PV,
previous value; S, stop; V, value) in WT, D1R-Cre, and D2R-Cre mice (mean across animals). CC task, classical conditioning task. (C) Mean absolute spatial
correlations between reward-related variables (classical conditioning task), between movement-related variables (open-field test), and across reward- and
movement-related variables. ***P < 0.001 (one-way ANOVA followed by Tukey tests). (D) Dendrograms showing hierarchical clustering of spatial clusters for
different variables. The spatial correlation maps in B were reordered according to the clustering.
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differently grouped between D1R-Cre and A2a-Cre mice. Spe-
cifically, spatial clusters for value, outcome, and previous outcome
were grouped in A2a-Cre mice (and also in WT mice) but not in
D1R-Cre mice (Fig. 5D). To test whether this difference is sig-
nificant, we compared cluster relationships among these three
variables (outcome, previous outcome, and value) between D1R-
Cre and A2a-Cre mice using a permutation test (Materials and
Methods). The results indicated that the spatial cluster relationship
between value and outcome is significantly different between
D1R-Cre and A2a-Cre mice (P = 0.016; value versus previous
outcome, P = 0.105; outcome versus previous outcome, P = 0.408;
alpha adjusted to 0.017 for Bonferroni correction). These results
indicate that relationships between different functional spatial
clusters are overall similar but those related to reward-based
learning (outcome and value) are more related in A2a-Cre than
D1R-Cre mice.

Cluster Changes during Learning. The results described so far are
based on the analysis of the data obtained on the last day of
classical conditioning. To examine how functional spatial clus-
tering may change during learning, we compared spatial clusters
between the first and last days of classical conditioning. We used
the data obtained from the D1R-Cre and A2a-Cre mice for this
analysis. Fig. 6 A and C shows sample spatial coefficient maps for
value on days 1 and 5 of a D1R-Cre mouse. As shown, striatal
neurons formed a significant value-related spatial cluster not
on day 1 (P = 0.210) but on day 5 (P = 0.002) in this sample
mouse (Fig. 6 B and D). In the group analysis (n = 10; 5 D1R-
Cre and 5 A2a mice), local cluster index was significantly greater
on day 5 than day 1 for value [paired t test, t(9) = −3.77, P =
0.004] and previous value [t(9) = −3.47, P = 0.005] but not for the
other variables [outcome, t(9) = 0.091, P = 0.929; previous out-
come, t(9) = −2.00, P = 0.077; forward motion, t(9) = −0.48, P =
0.604; stop, t(9) = 0.40, P = 0.780; contralateral turn, t(9) = −0.48,
P = 0.720; ipsilateral turn, t(9) = 0.48, P = 0.400; alpha adjusted
to 0.006 for Bonferroni correction; Fig. 6E]. Note that the only
learning-dependent variables in our tasks were value-related
ones (value and previous value). These results show that spa-
tial clusters of striatal neurons coding learning-dependent vari-
ables can be shaped by learning.

Discussion
To examine the functional spatial clustering of direct- and
indirect-pathway striatal neurons, we recorded calcium signals
from >100 dorsal striatal neurons simultaneously in WT, D1R-
Cre, and A2a-Cre mice performing a probabilistic classical con-
ditioning task and an open-field test. We found that both direct-
and indirect-pathway neurons form spatially clustered activity
patterns for movement- as well as reward-related variables. The
relationship between clusters for different variables was generally
similar, but the relationship between outcome- and value-related
clusters was stronger in the indirect than direct pathway. We also
found that value-related spatial clusters are progressively refined
with learning.

Evidence for Functional Spatial Clusters in the Striatum. We employed
two different analysis procedures, the local cluster index and spatial
autocorrelation, to examine whether functionally related striatal
neurons are spatially clustered. Both methods indicated that dorsal
striatal neurons form significant functional spatial clusters. One-
photon calcium imaging may contain local background fluctuations
of fluorescence signals from out-of-focus neurons and neuropil
contaminations (25) which may lead to false-positive spatial clus-
ters unless background fluctuations are adequately corrected. To
control for such misidentification, we used an algorithm that ex-
tracts local background fluorescence signals (25). We found that
the calcium traces extracted using background signals from other
sessions were highly correlated with the originally extracted

calcium traces (SI Appendix, Fig. S4). Furthermore, calcium signal
correlations were low between neurons as previously reported (21).
These results cannot be explained if the calcium signals were
contaminated with local background signals.
Previous studies exploring the spatial organization of striatal

neurons (10, 16, 20–22, 31, 32) have yielded inconsistent results
regarding functional spatial clustering. The conclusions range
from compact spatial clusters (20) to broad and loosely organized
spatial clusters (16, 21) and no obvious spatial clusters (10, 22).
Our results support broad and loosely organized spatial clustering
of functional striatal units. It remains to be clarified why different
conclusions were obtained across studies. Nevertheless, some of
the previous studies provide clues to why different outcomes may
have been obtained depending on experimental and analytical
procedures. Klaus et al. (21) have shown that inadequate correction
of background signals may lead to erroneous identification of
compact functional clusters, which can explain why compact clusters
were found in an earlier study (20). Parker et al. (16) found that
functional spatial clustering of striatal units is difficult to detect with
two-photon imaging unless followed by a volumetric analysis, which
can explain why functional spatial clustering was not detected in a
previous two-photon imaging study (10). Our study suggests that the
use of a measure inappropriate for detecting broadly organized
functional clusters (pairwise distance) and relatively small numbers
of simultaneously recorded neurons might be reasons why no sig-
nificant functional spatial clusters were found in a previous one-
photon imaging study (10, 22).
Our results show that the size of a spatial cluster is highly var-

iable across different reward- and movement-related variables.
The three-dimensional (3D) structure of a functional spatial
cluster may be irregular. Moreover, it may undergo dynamic re-
fining during learning as shown in our study. Considering that the
cluster we observed with one-photon imaging represents a 2D
sampling of a 3D structure, the shape and size of a cluster may
vary widely depending on the position of the imaging lens relative
to a cluster. A reliable estimation of the functional spatial cluster
may require a larger sample size, a volumetric analysis with sam-
pling at multiple focal planes, and an analysis method for handling
irregular shapes.

Spatial Clusters for Reward- and Movement-Related Variables. Pre-
vious studies examined the functional spatial clustering of striatal
neurons related to voluntary movement (16, 20, 21). Here, we
examined functional spatial clustering related to movement as well
as reward. We found that spatial clusters for both movement- and
reward-related variables are broadly organized. Broadly organized
spatial clustering might be a general organizational principle for
representing a variable in the striatum.
Even though characteristics of functional spatial clusters were

similar between direct- and indirect-pathway neurons, they were
not identical. Both direct- and indirect-pathway neurons in-
creased activity during movement onset (forward motion, con-
tralateral turn, and ipsilateral run) in the open-field test so that
movement-related neural activity is positively correlated with
each other and their functional clusters are grouped by hierar-
chical clustering. However, reward-related neural activity was
more variable between direct- and indirect-pathway neurons. In
particular, functional clusters for two closely related variables,
namely outcome and value, were more similar in A2a-Cre than
D1R-Cre mice so that hierarchical clustering classified the
functional clusters for these two variables in the same group in
A2a-Cre mice but in different groups in D1R-Cre mice. A per-
mutation test also indicated a significant difference in the simi-
larity of the functional clusters for these two variables between
D1R-Cre and A2a-Cre mice. These results suggest a difference
in the spatial organization of reward-related functional clusters
between the direct and indirect pathways, which may be related
to a more important role of the indirect than direct pathway in
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reward-based learning (26, 33). Furthermore, the size of the
functional cluster estimated with the local cluster index varied
across the animal groups, suggesting that functional clusters of
the two pathways are not in perfect register. Note that the results

obtained from the WT versus Cre-line mice should be inter-
preted with caution because the WT sample size is small (n = 3)
and the calcium indicator (GCaMP6f) was likely to be expressed
more profusely in striatal interneurons in WT compared with the

Fig. 6. Formation of value-related spatial clusters during training. (A–D) Sample spatial maps (A and C) and corresponding local cluster functions (B and D)
for value on the first (A and B) and last (day 5; C and D) days of training in a D1R-Cre mouse. The same format is used as in Fig. 4F. (E) The bar graphs show
local cluster indices for different variables for the first day (gray) and the last day (blue) of training (mean ± SEM). Circles and thin lines denote individual
animal data (five D1R-Cre and five A2a-Cre mice). Asterisks indicate significant difference between the first and last days (*P < 0.006, paired t test).
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Cre-line mice (24, 34). Also note a critical limitation of our finding,
namely that direct- and indirect-pathway neuronal activity was
recorded from different animals. Therefore, our observation needs
to be confirmed in future studies by recording direct- and indirect-
pathway neuronal activity simultaneously from the same animal (16).

Learning-Induced Functional Spatial Clusters. One of the major
objectives of this study was to test whether learning influences
functional spatial clusters in the dorsal striatum. Our results
show clearly that neurons coding learning-related variables
(value and previous value) progressively form spatial clusters as
cue–outcome contingency learning progresses. Note that clusters
related to trial outcome did not change during the classical
conditioning. Clusters related to movement-related variables
during the free-exploration test did not change, either. That the
effect of learning was specific to learning-related variables argues
against the possibility our results are an outcome of nonspecific
changes induced by behavioral training. Our findings are con-
sistent with the previous physiological studies that found
training-induced refining of striatal neuronal ensemble activity
(35, 36). A recent calcium imaging study also found that striatal
neuronal ensemble activity is refined with motor learning (10).
The striatum plays an important role in reward-based learning
(1, 3, 37, 38). Our results indicate that striatal neurons respond
to initially neutral sensory cues in a way to form functional
spatial clusters as neutral cues gain predictive values about up-
coming rewards. It remains to be determined whether value-
related functional spatial clusters observed in the present study
are an outcome of neural circuit changes in the striatum, cortex,
or both. Elucidating whether and how changes in striatal neural
circuits give rise to value-related functional spatial clusters might
provide an important clue for understanding striatal neural
processes underlying reward-based learning.

Beyond the Classic Model of the Basal Ganglia. We found that
functional spatial clusters formed by D1R-expressing (direct
pathway) and D2R-expressing (indirect pathway) striatal neu-
rons are similar for both reward- and movement-related vari-
ables. When functional spatial clusters of direct- and indirect-
pathway neurons were examined in the same animal, no clear
difference was found between them (16). We also found both
positive and negative relationships in striatal neuronal responses
to two different variables, which was generally similar between
the direct and indirect pathways. These features are unexpected
and cannot be readily explained by the classic dichotomous
model (5, 6, 39) or the selection-suppression model (13, 14) of
the basal ganglia. Our and previous imaging studies (16, 21)
suggest that, for both the direct and indirect pathways, multiple,
overlapping groups of striatal neurons represent various move-
ment- and reward-related variables. They also suggest that
functional clusters of direct- and indirect-pathway neurons are
intermingled rather than being spatially segregated. Previous
studies have shown similar encoding of movement- and reward-
related variables by direct- and indirect-pathway striatal neurons
(11, 12, 26, 40). Thus, unlike as proposed by the conventional
dichotomous models, it is likely that striatal control of behavior
is shaped by overall activity patterns of direct- and indirect-
pathway neurons across multiple functional clusters. Given that
direct- and indirect-pathway neurons have opposing functional
output connectivity (41), striatal control of behavior is likely to
be determined by precise spatiotemporal dynamics of direct- and
indirect-pathway neurons. This might increase the degree of
freedom for flexible control of behavior compared with the
conventional dichotomous models.

Materials and Methods
Experimental Models and Subject Details. The experimental protocol was
approved by the Animal Care and Use Committee of the Korea Advanced

Institute of Science and Technology. C57BL/6J bacterial artificial chromosome
transgenic mice expressing Cre recombinase under the control of the do-
pamine D1 receptor (D1R-Cre, EY217; Gene Expression Nervous System Atlas;
n = 5) or adenosine A2a receptor (A2a-Cre, Tg [Adora2a-Cre] KG139Gsat/
Mmucd; Mutant Mouse Resource & Research Centers; n = 5) were used along
with C57BL/6J (The Jackson Laboratory) WT mice (n = 3). All mice were in-
dividually housed and the experiments were conducted in the dark phase of
a 12-h light/dark cycle. The mice were restricted from access to water for 2 d
prior to training in the classical conditioning task. Their body weights were
monitored and maintained at >80% of ad libitum body weights. The mice
were 10 to 18 wk old at the time of surgery.

Virus Injection and Lens Implantation. The mouse’s head was fixed in the
stereotaxic frame (Neurostar) under isoflurane anesthesia (1.5 to 2.0%
[vol/vol] in 100% oxygen flow). Three small burr holes were made on the
cranial surface (unilateral, counterbalanced across animals). The coordinates
of the three cranial holes were (in millimeters) 0.7 anterior (A) and 2.2 lateral
(L), 0.7 A and 1.8 L, and 0.2 A and 2.0 L to bregma. A drop of diluted adeno-
associated virus carrying the gene for a genetically encoded calcium indi-
cator (0.3 μL; AAV1-hsyn-GCaMP6f, 2.3 × 1012 genome copies per milliliter
for WT; AAV1-flex-GCaMP6f, 2.1 × 1012 genome copies per milliliter for D1-
Cre and A2a-Cre mice) was injected into each cranial hole at 2.3 mm below
the brain surface using a glass pipette. The rate of virus injection was <0.1
μL/min and the injection pipette was held in place for 5 min after completing
the injection to ensure sufficient diffusion of the virus. The cranial holes
were covered with bone wax and the head skin was sealed with surgical
suture (5-0 Vicryl and Vetbond adhesive; 3M). A GRIN lens was implanted
under isoflurane anesthesia 2 wk after the virus injection surgery. A cranial
hole (diameter, 1.2 to 1.3 mm; 0.45 mm A and 2.0 mm L to bregma) was
made using a trephine drill bit (diameter, 1 mm), dura and bone debris were
gently removed, and ∼2 mm of cortical tissue was aspirated using a blunt
26G needle and a custom-built microsuction device. Then, a GRIN lens (di-
ameter, 1 mm) that was placed in a custom-built lens holder was lowered
into the target site at the speed of 100 μm/min. Care was taken to prevent
bleeding during lens implantation to avoid the formation of blood clots that
may block the view of the lens. The lens and head-fixation plate were firmly
fixed on the cranial surface using adhesive resin (Sun Medical), and the
upper surface of the implanted lens was covered with a small plastic cap to
prevent potential physical damage. The expression of GCaMP6f in the target
site was monitored regularly after GRIN lens implantation with an nVista
microscope (Inscopix). When the mouse showed sufficient expression of
GCaMP6f in the target site, the baseplate for the nVista microscope was
attached to the mouse’s head using ultraviolet glue (Edmund Optics) and
covered with black orthodontic resin (Lang).

Behavioral Task. The mice performed a probabilistic classical conditioning task
under head fixation in a custom-built apparatus (Fig. 1) and then free explo-
ration in a square arena (30 × 30 × 30 cm; Fig. 2) with calcium signals being
monitored during the tasks. In the classical conditioning task, 0.5 s following the
delivery of a trial-onset signal (a clicking sound from a solenoid valve), a head-
fixedmouse was presentedwith one of three different odor cues (citral, isoamyl
acetate, and L-carvone diluted 1/1,000 [vol/vol] in mineral oil) for 1 s. Pulses of
odor were delivered through a custom-designed olfactometer in a pseudo-
random order. Each odor cue was followed by a different probability (80, 50, or
20%) of water (5 μL) delivery following a delay of 1 s. A buzzer sound (2.3 kHz,
100 ms) was delivered in unrewarded trials. The animal’s licking response was
detected with an infrared-beam sensor. Trials in which the mouse did not
consume the delivered water until the beginning of the next trial were con-
sidered incomplete. These trials (no water consumption) and their next trials
(unconsumed water remained available) were excluded from the analysis. All
behavioral events were recorded with the Cheetah Data Acquisition System
(Neuralynx). After completion of the classical conditioning task (total 320 trials
per day), the mouse was gently moved to the open-field arena (square box,
30 × 30 × 30 cm) and allowed to freely explore the arena. Calcium imaging was
performed for 10 min in the arena after 5 min of an intermission. The mice
were initially habituated to the experimental settings (head fixation in the
classical conditioning apparatus and free exploration in the open-field arena)
for 3 d (1 h/d) before behavioral training began. The mice were then trained
until they showed differential delay-period licking rates to three different odor
cues (one-way ANOVA followed by post hoc Tukey test, P < 0.01 for all com-
parisons). Once they reached this criterion, they performed the tasks for 2 ad-
ditional days. Calcium signals were monitored from the first day of training.

Calcium Imaging. Calcium fluorescent images were acquired through the
implanted GRIN lens and nVista microscope (Inscopix) at 20 frames per second
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with 0.1 to 0.2 mW/mm2 of light-emitting diode power. External pulse sig-
nals (5-V transistor–transistor logic) generated by a custom-designed pulse
generator were delivered to the nVista and Cheetah acquisition systems to
synchronize calcium images and task events. The synchronizing pulse signal
was delivered at the initiation of each trial in the classical conditioning task
and every second in the open-field test.

Image Processing. All image processing was performed with Inscopix Data
Processing Software (version 1.1). The raw image of each frame was trans-
lated into a 16-bit TIFF image with an image decompressor (Inscopix) and
dropped frames and defective pixels were corrected with preprocessing.
Spatial downsampling by a factor of 4 was applied to the images for efficient
data processing. No temporal downsampling was used. Motion correction
was performed using a prominent vascular structure as a reference frame
(Movie S1). The video was then exported in TIFF format and further analyzed
with the CNMF-E algorithm (25) which is used widely for background fluc-
tuation correction of one-photon calcium imaging data (16, 21).

Regression Analysis. Neural activity related to value, outcome, previous value,
and previous outcome was examined using the following regression model:

F(t) = a0 + a1 ·O(t) + a2 ·V(t) + a3 · L(t) + a4 ·O(t − 1) + a5 ·V(t − 1), [1]

where F(t) represents a calcium trace in a given analysis window, O(t), V(t),
and L(t) are outcome (1 if rewarded and 0 if unrewarded), value (reward
probability; 0.2, 0.5, or 0.8), and lick rates, respectively, in each analysis time
bin in trial t, and a0 to a5 are regression coefficients. We analyzed neural
spikes in a moving window of 0.5 s that was advanced in 0.1-s steps to ex-
amine temporal profiles of neural activity related to these variables. There
were moderate correlations between value and anticipatory lick rate during
the delay period (0.53 ± 0.17) and between outcome and lick rate during the
outcome period (first 1 s; 0.27 ± 0.10, mean ± SD across sessions). Their
variance inflation factors, which are measures for multicollinearity (42), were
1.47 ± 0.40 and 1.1 ± 0.1, respectively.

In the regression analysis of the open-field locomotion test, only those
epochs with a given behavioral category longer than 1 s (Fig. 2D) were used.
The mean of randomly selected (1,000 times) calcium traces during 1-s time
epochs during the open-field test was used as the baseline trace. Neural
activity related to each type of behavior (forward motion, stop, ipsilateral
turn, and contralateral turn) was examined separately as the following:

B(t) = a0 + a1 ·C(t), [2]

where B(t) represents the mean calcium trace during a 1-s epoch, C(t) is a
behavior index (0 for baseline trace and 1 for a given behavioral category),
and a0 and a1 are regression coefficients.

Video Tracking. The animal’s behavior during the open-field test was recor-
ded with a high-definition video camera (30.0 Hz; Hauppauge) located
30 cm above the arena. The head, center, and proximal part of the mouse
tail were tracked using an open-source, deep learning-based tracking al-
gorithm (DeepLabCut) (43). The head was defined as the lower part of the
nVista microscope attached to the skull of the mouse (Fig. 2B). For the
training of the algorithm, 18 or 19 frames were selected from ∼10 min (8,500
to 9,500 frames) of video data, and head, center, and the proximal part of
the tail were labeled manually. After an episode of supervised training, the
estimated marker positions were validated, corrected, and trained further to
achieve satisfactory tracking. The training was performed at least 200,000
iterations until the performance of position estimation reached a plateau.
Then, the head, center, and the proximal part of the tail positions were
acquired using the trained algorithm, head directions were determined by
calculating the center-to-head position angles (Fig. 2B), and linear and an-
gular velocities were calculated and smoothed with a Gaussian filter (σ = 10
ms). Forward motion was defined as the center velocity exceeding 2 SDs
above the mean center velocity. Contralateral and ipsilateral turns were
defined as the head angular velocity exceeding 2 SDs above the mean head
angular velocities toward the contralateral and ipsilateral sides, respectively,
to the lens-implanted hemisphere. If a forward-motion event overlapped
with a contra/ipsilateral turn event, the event was defined as the contra/
ipsilateral turn. Initiation and termination of each behavioral event were

defined as when the velocity (center or head angle) crossed 0.5 SD above
and below the mean velocity, respectively. A complete stop event was de-
fined as when each center, head, and tail velocity fell 0.5 SD below the mean
of the corresponding velocity. All of the other epochs not included in the
above four categories were defined as the “other” state.

Cross-Correlation of Calcium Signals. We calculated Pearson’s correlation co-
efficients of calcium transient signals for all pairs of simultaneous recorded
striatal neurons in each behavioral task (classical conditioning and open-field
test) (21). We then calculated the mean coefficient as a function of the distance
between two neurons using a sliding window of 30 μm that was advanced in 1-
μm steps. The baseline correlation was defined as the mean correlation coef-
ficient between 300 and 500 μm from the center. The distance from the center
to the first point where the correlation curve crosses the baseline (correlation
decay distance) was determined for each task for each animal.

Spatial Clustering Algorithm. We calculated the mean absolute difference in
the regression coefficient between a reference neuron and all other neurons
within a circular region of interest (ROI) centered at the reference neuron.We
repeated this procedure while designating each and every neuron in the ROI
as the reference neuron, and averaged the resulting local-difference values
to obtain a “local difference” for a given ROI (SI Appendix, Fig. S6A). We
calculated the local difference as we increased the radius of the ROI from 30
to 600 μm in 15-μm steps. We also calculated the local difference after
randomly permuting spatial positions of the recorded neurons, which was
repeated 1,000 times. We then calculated the area between the local-
difference curve of the original data and the averaged local-difference curve
of the 1,000 spatial permutation data (“local cluster index”; SI Appendix, Fig.
S6B). We determined the P value of the original local cluster index based on a
cumulative probability function of the local cluster index obtained from the
1,000 permuted data (SI Appendix, Fig. S6C). Cluster size was defined as the size
of the ROI where the local-difference curve of the original data crosses 2 SDs of
that of the shuffled data (SI Appendix, Fig. S6B).

Relationship between Different Spatial Clusters. The relationship between two
different functional spatial clusters was quantified by calculating spatial
correlation (neuron-by-neuron correlation) between two spatial maps of
regression coefficients. To test whether spatial cluster relationships between
different variables vary significantly between D1R-Cre and A2a-Cre mice, we
randomly assigned 10 mice (5 D1R-Cre and 5 A2a-Cre) to two groups and
calculated the spatial correlation between two different variables. This was
repeated 1,000 times, and P values were determined based on the frequency
of the original spatial correlation difference between D1R-Cre and A2a-Cre
exceeding the spatial correlation difference of the permuted data.

Statistical Analysis. One-way ANOVA and Tukey post hoc tests were used to
compare licking responses to three different odor cues to compare cluster
size among different animal groups and to compare absolute spatial-map
correlation between variables within and across behavioral tasks. Two-way
ANOVA and Tukey post hoc tests were used to compare correlation decay
distance and averaged cluster size across behavioral contexts and animal
groups. χ2 tests were used to compare fractions of direct- and indirect-
pathway striatal neurons coding a given variable. Permutation tests were
used to test the statistical significance of spatial clustering and to compare the
relationship between spatial clusters for different variables across D1R-Cre and
A2a-Cre mice (see above for detailed procedures). Student’s t tests were used
for statistical comparisons of all other measures. All statistical tests were two-
tailed and P values < 0.05 were considered significant unless otherwise noted.
All data are expressed as means ± SEM unless otherwise noted.

Data Availability. Calcium traces from striatal neurons and custom-written
code for data analysis reported in this paper have been deposited in
GitHub (https://github.com/LuckyFace/Str_functional_cluster).
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